Some radicals, Frattini and Cartan subalgebras of Leibnizn-algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cartan Subalgebras in C*-Algebras

According to J. Feldman and C. Moore’s wellknown theorem on Cartan subalgebras, a variant of the group measure space construction gives an equivalence of categories between twisted countable standard measured equivalence relations and Cartan pairs, i.e., a von Neumann algebra (on a separable Hilbert space) together with a Cartan subalgebra. A. Kumjian gave a C∗-algebraic analogue of this theore...

متن کامل

CARTAN SUBALGEBRAS OF LEIBNIZ n-ALGEBRAS

The present paper is devoted to the investigation of properties of Cartan subalgebras and regular elements in Leibniz n-algebras. The relationship between Cartan subalgebras and regular elements of given Leibniz n-algebra and Cartan subalgebras and regular elements of the corresponding factor n-Lie algebra is established. 1 Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, D-...

متن کامل

Cartan Subalgebras in Lie Algebras of Associative Algebras

A Cartan subalgebra of a finite-dimensional Lie algebra L is a nilpotent subalgebra H of L that coincides with its normalizer NL H . Such subalgebras occupy an important place in the structure theory of finite-dimensional Lie algebras and their properties have been explored in many articles (see, e.g., Barnes, 1967; Benkart, 1986; Wilson, 1977; Winter, 1969). In general (more precisely, when th...

متن کامل

On the Cartan Subalgebras of Lie Algebras over Small Fields

In this note we study Cartan subalgebras of Lie algebras defined over finite fields. We prove that a possible Lie algebra of minimal dimension without Cartan subalgebras is semisimple. Subsequently, we study Cartan subalgebras of gl(n, F ). AMS classification: 17B50

متن کامل

Some Results on Complex Algebras of Subalgebras

In this paper we investigate a property of the algebras of complexes (or power algebras or globals) which is a natural generalization of the notion of having all subgroups to be quasinormal in group theory. We say that an algebra A has the complex algebras of subalgebras if the set of all non-empty subuniverses of this algebra forms a subuniverse of the algebra of complexes of A. For example, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear and Multilinear Algebra

سال: 2013

ISSN: 0308-1087,1563-5139

DOI: 10.1080/03081087.2012.758260